979 resultados para CD8-Positive T-Lymphocytes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The graft-versus-myeloma (GVM) effect represents a powerful form of immune attack exerted by alloreactive T cells against multiple myeloma cells, which leads to clinical responses in multiple myeloma transplant recipients. Whether myeloma cells are themselves able to induce alloreactive T cells capable of the GVM effect is not defined. Using adoptive transfer of T naive cells into myeloma-bearing mice (established by transplantation of human RPMI8226-TGL myeloma cells into CD122(+) cell-depleted NOD/SCID hosts), we found that myeloma cells induced alloreactive T cells that suppressed myeloma growth and prolonged survival of T cell recipients. Myeloma-induced alloreactive T cells arising in the myeloma-infiltrated bones exerted cytotoxic activity against resident myeloma cells, but limited activity against control myeloma cells obtained from myeloma-bearing mice that did not receive T naive cells. These myeloma-induced alloreactive T cells were derived through multiple CD8(+) T cell divisions and enriched in double-positive (DP) T cells coexpressing the CD8alphaalpha and CD4 coreceptors. MHC class I expression on myeloma cells and contact with T cells were required for CD8(+) T cell divisions and DP-T cell development. DP-T cells present in myeloma-infiltrated bones contained a higher proportion of cells expressing cytotoxic mediators IFN-gamma and/or perforin compared with single-positive CD8(+) T cells, acquired the capacity to degranulate as measured by CD107 expression, and contributed to an elevated perforin level seen in the myeloma-infiltrated bones. These observations suggest that myeloma-induced alloreactive T cells arising in myeloma-infiltrated bones are enriched with DP-T cells equipped with cytotoxic effector functions that are likely to be involved in the GVM effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Most individuals infected with Mycobacterium tuberculosis do not develop tuberculosis (TB) and can be regarded as being protected by an appropriate immune response to the infection. The characterization of the immune responses of individuals with latent TB may thus be helpful in the definition of correlates of protection and the development of new vaccine strategies. The highly protective antigen heparin-binding hemagglutinin (HBHA) induces strong interferon (IFN)- gamma responses during latent, but not active, TB. Because of the recently recognized importance of CD8(+) T lymphocytes in anti-TB immunity, we characterized the CD8(+) T lymphocyte responses to HBHA in subjects with latent TB. RESULTS: HBHA-specific CD8(+) T lymphocytes expressed memory cell markers and synthesized HBHA-specific IFN- gamma .They also restricted mycobacterial growth and expressed cytotoxicity by a granule-dependent mechanism. This activity was associated with the intracellular expression of HBHA-induced perforin. Surprisingly, the perforin-producing CD8(+) T lymphocytes were distinct from the IFN- gamma -producing CD8(+) T lymphocytes. CONCLUSION: During latent TB, the HBHA-specific CD8(+) T lymphocyte population expresses all 3 effector functions associated with CD8(+) T lymphocyte-mediated protective immune mechanisms, which supports the notion that HBHA may be protective in humans and suggests that markers of HBHA-specific CD8(+) T lymphocyte responses may be useful in the monitoring of protection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TLR are evolutionarily conserved molecules that play a key role in the initiation of innate antimicrobial immune responses. Through their influence on dendritic cell maturation, these receptors are also thought to indirectly shape the adaptive immune response. However, no data are currently available regarding both TLR expression and function in human CD8+ T cell subsets. We report that a subpopulation of CD8+ T cells, i.e., effector, but neither naive nor central memory cells, constitutively expresses TLR3. Moreover, the ligation of the receptor by a specific agonist in TLR3-expressing CD8+ T cells increased IFN-gamma secretion induced by TCR-dependent and -independent stimulation, without affecting proliferation or specific cytolytic activity. These results thereby suggest that TLR3 ligands can not only indirectly influence the adaptive immune response through modulation of dendritic cell activation, but also directly increase IFN-gamma production by Ag-specific CD8+ T cells. Altogether, the present work might open new perspectives for the use of TLR ligands as adjuvants for immunotherapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8+ cytotoxic T lymphocytes (CTL) frequently infiltrate tumors, yet most melanoma patients fail to undergo tumor regression. We studied the differentiation of the CD8+ tumor-infiltrating lymphocytes (TIL) from 44 metastatic melanoma patients using known T-cell differentiation markers. We also compared CD8+ TIL against the T cells from matched melanoma patients’ peripheral blood. We discovered a novel subset of CD8+ TIL co-expressing early-differentiation markers, CD27, CD28, and a late/senescent CTL differentiation marker, CD57. This CD8+CD57+ TIL expressed a cytolytic enzyme, granzyme B (GB), yet did not express another cytolytic pore-forming molecule, perforin (Perf). In contrast, the CD8+CD57+ T cells in the periphery were CD27-CD28-, and GBHi and PerfHi. We found this TIL subset was not senescent and could be induced to proliferate and differentiate into CD27-CD57+, perforinHi, mature CTL. This further differentiation was arrested by TGF-β1, an immunosuppressive cytokine known to be produced by many different kinds of tumors. Therefore, we have identified a novel subset of incompletely differentiated CD8+ TIL that resembled those found in patients with uncontrolled chronic viral infections. In a related study, we explored prognostic biomarkers in metastatic melanoma patients treated in a Phase II Adoptive Cell Therapy (ACT) trial, in which autologous TIL were expanded ex vivo with IL-2 and infused into lymphodepleted patients. We unexpectedly found a significant positive clinical association with the infused CD8+ TIL expressing B- and T- lymphocyte attentuator (BTLA), an inhibitory T-cell receptor. We found that CD8+BTLA+ TIL had a superior proliferative response to IL-2, and were more capable of autocrine IL-2 production in response to TCR stimulation compared to the CD8+BTLA- TIL. The CD8+BTLA+ TIL were less differentiated and resembled the incompletely differentiated CD8+ TIL described above. In contrast, CD8+BTLA- TIL were poorly proliferative, expressed CD45RA and killer-cell immunoglobulin-like receptors (KIRs), and exhibited a gene expression signature of T cell deletion. Surprisingly, ligation of BTLA by its cognate receptor, HVEM, enhanced the survival of CD8+BTLA+ TIL by activating Akt/PKB. Our studies provide a comprehensive characterization of CD8+ TIL differentiation in melanoma, and revealed BTLA as a novel T-cell differentiation marker along with its role in promoting T cell survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective Ankylosing spondylitis (AS) is a common inflammatory arthritis affecting primarily the axial skeleton. IL23R is genetically associated with AS. This study was undertaken to investigate and characterize the role of interleukin-23 (IL-23) signaling in AS pathogenesis. Methods The study population consisted of patients with active AS (n = 17), patients with psoriatic arthritis (n = 8), patients with rheumatoid arthritis, (n = 9), and healthy subjects (n = 20). IL-23 receptor (IL-23R) expression in T cells was determined in each subject group, and expression levels were compared. Results The proportion of IL-23R-expressing T cells in the periphery was 2-fold higher in AS patients than in healthy controls, specifically driven by a 3-fold increase in IL-23R-positive γ/δ T cells in AS patients. The proportions of CD4+ and CD8+ cells that were positive for IL-17 were unchanged. This increased IL-23R expression on γ/δ T cells was also associated with enhanced IL-17 secretion, with no observable IL-17 production from IL-23R-negative γ/δ T cells in AS patients. Furthermore, γ/δ T cells from AS patients were heavily skewed toward IL-17 production in response to stimulation with IL-23 and/or anti-CD3/CD28. Conclusion Recently, mouse models have shown IL-17-secreting γ/δ T cells to be pathogenic in infection and autoimmunity. Our data provide the first description of a potentially pathogenic role of these cells in a human autoimmune disease. Since IL-23 is a maturation and growth factor for IL-17-producing cells, increased IL-23R expression may regulate the function of this putative pathogenic γ/δ T cell population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antigen stimulation of naive T cells in conjunction with strong costimulatory signals elicits the generation of effector and memory populations. Such terminal differentiation transforms naive T cells capable of differentiating along several terminal pathways in response to pertinent environmental cues into cells that have lost developmental plasticity and exhibit heightened responsiveness. Because these cells exhibit little or no need for the strong costimulatory signals required for full activation of naive T cells, it is generally considered memory and effector T cells are released from the capacity to be inactivated. Here, we show that steadystate dendritic cells constitutively presenting an endogenously expressed antigen inactivate fully differentiated memory and effector CD8+ T cells in vivo through deletion and inactivation. These findings indicate that fully differentiated effector and memory T cells exhibit a previously unappreciated level of plasticity and provide insight into how memory and effector T-cell populations may be regulated. © 2008 by The American Society of Hematology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memory T cells develop early during the preclinical stages of autoimmune diseases and have traditionally been considered resistant to tolerance induction. As such, they may represent a potent barrier to the successful immunotherapy of established autoimmune diseases. It was recently shown that memory CD8+ T cell responses are terminated when Ag is genetically targeted to steady-state dendritic cells. However, under these conditions, inactivation of memory CD8+ T cells is slow, allowing transiently expanded memory CD8+ T cells to exert tissue-destructive effector function. In this study, we compared different Ag-targeting strategies and show, using an MHC class II promoter to drive Ag expression in a diverse range of APCs, that CD8+ memory T cells can be rapidly inactivated by MHC class II+ hematopoietic APCs through a mechanism that involves a rapid and sustained downregulation of TCR, in which the effector response of CD8+ memory cells is rapidly truncated and Ag-expressing target tissue destruction is prevented. Our data provide the first demonstration that genetically targeting Ag to a broad range of MHC class II+ APC types is a highly efficient way to terminate memory CD8+ T cell responses to prevent tissue-destructive effector function and potentially established autoimmune diseases. Copyright © 2010 by The American Association of Immunologists, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Cytokines secreted by intestinal T lymphocytes probably play a critical role in regulation of the gut associated immune responses. AIMS: To quantify interferon gamma (IFN-gamma) and interleukin 4 (IL-4) secreting cells (SC) among human intraepithelial (IEL) and lamina propria (LPL) lymphocytes from the duodenum and right colon in non-pathological situations and in the absence of in vitro stimulation. PATIENTS: Duodenal and right colonic biopsy specimens were obtained from patients with no inflammation of the intestinal mucosa. METHODS: Intraepithelial and lamina propria cell suspensions were assayed for numbers of cells spontaneously secreting IFN-gamma and IL-4 by a two site reverse enzyme linked immunospot technique (ELISPOT). RESULTS: The relatively high proportion of duodenal lymphocytes spontaneously secreting IFN-gamma (IEL 3.6%; LPL 1.9%) and IL-4 (IEL 1.3%; LPL 0.7%) contrasted with the very low numbers of spontaneously IFN-gamma SC and the absence of spontaneously IL-4 SC among peripheral blood mononuclear cells. In the basal state, both IFN-gamma and IL-4 were mainly produced by CD4+ cells. Within the colon, only 0.2% of IEL and LPL secreted IFN-gamma in the basal state, and 0.1% secreted IL-4. CONCLUSIONS: Compared with peripheral lymphocytes substantial proportions of intestinal epithelial and lamina propria lymphocytes spontaneously secrete IFN-gamma and/or IL-4. These cytokines are probably involved in the normal homoeostasis of the human intestinal mucosa. Disturbances in their secretion could play a role in the pathogenesis of gastrointestinal diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During many chronic infections virus-specific CD8 T cells succumb to exhaustion as they lose their ability to respond to antigenic activation. Combinations of IL-12, IL-18, and IL-21 have been shown to induce the antigen-independent production of interferon (IFN)-γ by effector and memory CD8 T cells. In this study we investigated whether exhausted CD8 T cells are sensitive to activation by these cytokines. We show that effector and memory, but not exhausted, CD8 T cells produce IFN-γ and upregulate CD25 following exposure to certain combinations of IL-12, IL-18, and IL-21. The unresponsiveness of exhausted CD8 T cells is associated with downregulation of the IL-18-receptor-α (IL-18Rα). Although IL-18Rα expression is connected with the ability of memory CD8 T cells to self-renew and efflux rhodamine 123, the IL-18Rα(lo) exhausted cells remained capable of secreting this dye. To further evaluate the consequences of IL-18Rα downregulation, we tracked the fate of IL-18Rα-deficient CD8 T cells in chronically infected mixed bone marrow chimeras and discovered that IL-18Rα affects the initial but not later phases of the response. The antigen-independent responsiveness of exhausted CD8 T cells was also investigated following co-infection with Listeria monocytogenes, which induces the expression of IL-12 and IL-18. Although IL-18Rα(hi) memory cells upregulated CD25 and produced IFN-γ, the IL-18Rα(lo) exhausted cells failed to respond. Collectively, these findings indicate that as exhausted T cells adjust to the chronically infected environment, they lose their susceptibility to antigen-independent activation by cytokines, which compromises their ability to detect bacterial co-infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Muscle specific tyrosine kinase myasthenia gravis (MuSK MG) is a form of autoimmune MG that predominantly affects women and has unique clinical features, including prominent bulbar weakness, muscle atrophy, and excellent response to therapeutic plasma exchange. Patients with MuSK MG have predominantly IgG4 autoantibodies directed against MuSK on the postsynaptic muscle membrane. Lymphocyte functionality has not been reported in this condition. The goal of this study was to characterize T cell responses in patients with MuSK MG. Intracellular production of IFN-gamma, TNF-alpha, IL-2, IL-17, and IL-21 by CD4+ and CD8+ T cells was measured by polychromatic flow cytometry in peripheral blood samples from 11 Musk MG patients and 10 healthy controls. Only one MuSK MG patient was not receiving immunosuppressive therapy. Regulatory T cells (Treg) were also included in our analysis to determine if changes in T cell function were due to altered Treg frequencies. CD8+ T cells from MuSK MG patients had higher frequencies of polyfunctional responses than controls, and CD4+ T cells had higher IL-2, TNF-alpha, and IL-17. MuSK MG patients had a higher percentage of CD4+ T cells producing combinations of IFN-gamma/IL-2/TNF-gamma, TNF-alpha/IL-2, and IFN-gamma/TNF-alpha. Interestingly, Treg numbers and CD39 expression were not different from control values. MuSK MG patients had increased frequencies of Th1 and Th17 cytokines and were primed for polyfunctional proinflammatory responses that cannot be explained by a defect in CD39 expression or Treg number.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T cell factor-1 (TCF-1) and lymphoid enhancer-binding factor 1, the effector transcription factors of the canonical Wnt pathway, are known to be critical for normal thymocyte development. However, it is largely unknown if it has a role in regulating mature T cell activation and T cell-mediated immune responses. In this study, we demonstrate that, like IL-7Ralpha and CD62L, TCF-1 and lymphoid enhancer-binding factor 1 exhibit dynamic expression changes during T cell responses, being highly expressed in naive T cells, downregulated in effector T cells, and upregulated again in memory T cells. Enforced expression of a p45 TCF-1 isoform limited the expansion of Ag-specific CD8 T cells in response to Listeria monocytogenes infection. However, when the p45 transgene was coupled with ectopic expression of stabilized beta-catenin, more Ag-specific memory CD8 T cells were generated, with enhanced ability to produce IL-2. Moreover, these memory CD8 T cells expanded to a larger number of secondary effectors and cleared bacteria faster when the immunized mice were rechallenged with virulent L. monocytogenes. Furthermore, in response to vaccinia virus or lymphocytic choriomeningitis virus infection, more Ag-specific memory CD8 T cells were generated in the presence of p45 and stabilized beta-catenin transgenes. Although activated Wnt signaling also resulted in larger numbers of Ag-specific memory CD4 T cells, their functional attributes and expansion after the secondary infection were not improved. Thus, constitutive activation of the canonical Wnt pathway favors memory CD8 T cell formation during initial immunization, resulting in enhanced immunity upon second encounter with the same pathogen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

B and T lymphocyte attenuator (BTLA) is a negative regulator of T cell activation, but its function in vivo is not well characterized. Here we show that mice deficient in full-length BTLA or its ligand, herpesvirus entry mediator, had increased number of memory CD8(+) T cells. The memory CD8(+) T cell phenotype resulted from a T cell-intrinsic perturbation of the CD8(+) T cell pool. Naive BTLA-deficient CD8(+) T cells were more efficient than wild-type cells at generating memory in a competitive antigen-specific system. This effect was independent of the initial expansion of the responding antigen-specific T cell population. In addition, BTLA negatively regulated antigen-independent homeostatic expansion of CD4(+) and CD8(+) T cells. These results emphasize two central functions of BTLA in limiting T cell activity in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD8 T cells play a key role in mediating protective immunity against selected pathogens after vaccination. Understanding the mechanism of this protection is dependent upon definition of the heterogeneity and complexity of cellular immune responses generated by different vaccines. Here, we identify previously unrecognized subsets of CD8 T cells based upon analysis of gene-expression patterns within single cells and show that they are differentially induced by different vaccines. Three prime-boost vector combinations encoding HIV Env stimulated antigen-specific CD8 T-cell populations of similar magnitude, phenotype, and functionality. Remarkably, however, analysis of single-cell gene-expression profiles enabled discrimination of a majority of central memory (CM) and effector memory (EM) CD8 T cells elicited by the three vaccines. Subsets of T cells could be defined based on their expression of Eomes, Cxcr3, and Ccr7, or Klrk1, Klrg1, and Ccr5 in CM and EM cells, respectively. Of CM cells elicited by DNA prime-recombinant adenoviral (rAd) boost vectors, 67% were Eomes(-) Ccr7(+) Cxcr3(-), in contrast to only 7% and 2% stimulated by rAd5-rAd5 or rAd-LCMV, respectively. Of EM cells elicited by DNA-rAd, 74% were Klrk1(-) Klrg1(-)Ccr5(-) compared with only 26% and 20% for rAd5-rAd5 or rAd5-LCMV. Definition by single-cell gene profiling of specific CM and EM CD8 T-cell subsets that are differentially induced by different gene-based vaccines will facilitate the design and evaluation of vaccines, as well as enable our understanding of mechanisms of protective immunity.